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A Point-Mass Mixture Random Effects Model
for Pitching Metrics

James Piette, Alexander Braunstein, Blakeley B. McShane, and Shane T. Jensen

Abstract

A plethora of statistics have been proposed to measure the effectiveness of pitchers in Major
League Baseball. While many of these are quite traditional (e.g., ERA, wins), some have gained
currency only recently (e.g., WHIP, K/BB). Some of these metrics may have predictive power, but
it is unclear which are the most reliable or consistent. We address this question by constructing a
Bayesian random effects model that incorporates a point mass mixture and fitting it to data on
twenty metrics spanning approximately 2,500 players and 35 years. Our model identifies FIP, HR/
9, ERA, and BB/9 as the highest signal metrics for starters and GB%, FB%, and K/9 as the highest
signal metrics for relievers. In general, the metrics identified by our model are independent of
team defense. Our procedure also provides a relative ranking of metrics separately by starters and
relievers and shows that these rankings differ quite substantially between them. Our methodology
is compared to a Lasso-based procedure and is internally validated by detailed case studies.

KEYWORDS: baseball, Bayesian models, entropy, mixture models, random effects



1 Introduction
Nobody likes to hear it, because it’s dull, but the reason you win or
lose is darn near always the same - pitching.

Earl Weaver

There is an avid interest in assessing the degree of signal in various met-
rics of pitching performance. A key element in this discussion is the differentia-
tion between events a pitcher can control and events that he cannot. Events within
the control of the pitcher should be better indicators of his true ability and thus
more predictive of future performance. In contrast, events beyond the control of
the pitcher can be attributed to chance variation and are not predictive of future
performance.

The baseball literature contains a litany of articles devoted to finding pitch-
ing metrics that are within a pitcher’s control. McCracken (2001) provides an ap-
proach based on defensive independent pitching statistics (DIPS), which aims to re-
move outside influences (e.g., team defense) from common measures such as ERA.
This strategy is supported by an examination of batting average on balls in play
(BABIP). Specifically, McCracken (2001) observed that: (i) a player’s BABIP was
only weakly correlated from year to year, (ii) team BABIP was a better predictor of
a given pitcher’s BABIP next year than his own BABIP this year, and (iii) the range
of BABIP exhibited over the course of a career was “about the same as the range
you would expect from random chance.”

In contrast, Tippett (2003) detected some degree of stability in BABIP from
year to year and found that players who faced more batters over the course of their
careers (i.e., more successful pitchers) had a lower BABIP than those who faced
fewer batters. However, the year to year correlation of BABIP was still observed to
be much weaker than defense independent measures such as strikeout rate.

Bradbury (2005) showed that the previous season DIPS is a better predictor
of current ERA than previous season ERA, and concluded that ”while pitchers may
have some ability to prevent hits on balls in play, the effect is small. And any ef-
fect a pitcher does have is reflected within DIPS metrics”. Gassko (2007) showed
that previous year DIPS is predictive of current year BABIP even when control-
ling for previous year BABIP, league, park, and defense effects. In other studies,
Keri (2007) developed a measure called fielding independent pitching (FIP),Caruth
(2007) examined home run to fly ball ratio (HR/FB), and Studeman (2006) exam-
ined the percentage of balls in play that are line drives (LD%).

Albert (2006) presents a beta-binomial model to tease out the variation in
pitcher performance due to variation in pitcher talent versus random chance. This
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model is applied to seven metrics: walk rate, strikeout rate, home run rate, non-
home run rate, run rate, and earned run rate. Albert (2006) finds the strikeout rate
to be the highest signal metric and explores the changes in these metrics between
eras.

Generally, the previous literature in this area lacks systematic evidence of
signal across (i) many metrics for (ii) many seasons with (iii) many players. Most
previous arguments for consistency of a metric are based on year-to-year correla-
tions which do not provide a complete story. We address this issue with a Bayesian
random effects model that assesses the degree of signal in twenty different pitching
metrics using data from approximately 2,500 unique pitchers (starters and relievers)
over thirty-five seasons.

2 Methodology

2.1 Data and Model

Our data is taken from the Fangraphs database (www.fangraphs.com) and spans
thirty-five seasons (1974-2008). We examine the twenty pitching metrics outlined
in our appendix separately for starting pitchers and relief pitchers. We exclude
player-seasons for starters who pitch less than 100 innings and relievers who pitcher
less than 40 innings. For pitchers who move from one role to another in a season,
we consider their starter innings and reliever innings separately.

Our interest is determining which metrics have signal and which are domi-
nated by noise. If a metric were pure noise, pitchers would be completely inconsis-
tent from year to year, and the best prediction one could make for a given pitcher in
future years would be the league average. This theory suggests a minimum thresh-
old for a metric: pitchers must perform consistently with respect to that metric over
the course of their careers.

We assess the consistency of a metric with a Bayesian point-mass mixture
random effects model. Our focus is on the novel results of our analysis, so we
provide a brief overview of the model here. A more detailed description of the
model and estimation procedure can be found in McShane et al. (2009).
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yi j|αi,σ
2,µ ∼ N(µ +αi,σ

2
i j) Likelihood

αi|τ2,γi ∼

{
≈ 0 if γi = 0
N(0,τ2) if γi = 1

Player Difference

γi ∼ Bernoulli(p1) Player Indicator

µ ∼ N(0,1002) Prior for League Mean

p1 ∼ Beta(1,1) Prior for Mixing Proportion

σ
2 ∼ IG(.01, .01) Prior for Season Variance

τ
2

∝ 1/τ Prior for Player Variance

In the model, yi j is the observation for pitcher i in season j of a particular
metric. µ is the overall major league baseball mean whereas αi is the difference
between pitcher i’s mean and this overall league mean. We note that each player-
season has a specific variance σ2

i j = σ2 · n̄/ni j where ni j is the number of innings
pitched by pitcher i in seasons j and n̄ is the average number of innings pitched.
This adjustment accounts for the fact that seasons for which a pitcher pitched more
contain more information than those for which he pitched less. The overall season-
to-season variance is captured by the global parameter σ2.

The key modeling assumption is that the random effects αi come from a
mixture of two components: either a point-mass at zero or a non-zero random effect
with variance τ2. For each pitcher i, the variable γi indicates whether his individ-
ual mean is equal to the league mean (γi = 0) or different (γi = 1). A key global
parameter for each metric will be p1, the proportion of pitchers that have non-zero
random effects αi.

In plain terms, our model assumes there are two kinds of pitchers: those
who have an “intrinsic talent” equal to that of the league and those who do not.
Approximately p1 percent of pitchers are in the latter category and they deviate
from the league mean by about ±τ . Finally, for a given pitcher with fixed talent
level, his season to season variation is on the order of ±σ . Our model generalizes
a standard random effects model, which estimates non-zero αi for all pitchers. In
a high signal setting where the standard random effects model holds, we should
estimate p1 to be close to one.

2.2 Evaluating Metrics

As mentioned above, a minimum threshold for a high signal metric would be that
pitchers perform consistently with respect to it over time, so that predictions for
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a pitcher’s future would be based on their personal history rather than the league
average. This suggests two important criteria for a metric: (i) player-specific in-
formation trumps league information for a large fraction of players and (ii) one has
high confidence about the specific pitchers who truly differ from league average. By
fulfilling both criteria, a useful metric contains both global evidence (large fraction
of players with signal) and local evidence (high confidence for individual players)
of high signal.

The first criterion is addressed by our model parameter p1, which identifies
exactly the fraction of players for which individual information trumps league in-
formation. We will use the posterior mean p̂1 of this parameter to assess whether
or not a metric fulfills this first criterion.

Our model can also be used to address the second criterion. For each player
i, we can calculate the posterior mean γ̂i of their indicator variable γi. When γ̂i is
close to one, we are very confident that player i has a non-zero random effect (i.e.,
a different personal mean compared to the league mean). Conversely, when γ̂i is
close to zero, we are very confident that player i is not different from the league
mean.

Hence, metrics with γ̂i near zero or one for most pitchers are metrics which
give high confidence about the quality of individual pitchers. We can formalize this
concept into a single value, the average −Entropy (Jaynes, 1957):

−Entropy =
1
m

m

∑
i=1

[γ̂i log(γ̂i)+(1− γ̂i) log(1− γ̂i)] (1)

Metrics with large values of both p̂1 and −Entropy are high signal metrics:
they are metrics which have (i) individual means different from the league mean for
a large fraction of players and for which (ii) it is clear which players are different
from the league mean and which are not. In the next section, we will show how
each of the twenty pitching metrics perform on these two measures separately for
starters and relievers.

3 Results
Our discussion of results is divided into three subsections. We first examine the
overall conclusions of our model before delving into a more detailed discussion of
several high signal metrics. Our model inference is then compared to the results of
a simpler analysis using the Lasso (Tibshirani, 1996) approach to sparse regression.
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3.1 Overall Evaluation of Metrics

An ideal metric demonstrates strong signal in our model by having both p̂1 near one
and −Entropy near zero. In Figure 1, we plot p̂1 versus −Entropy for each of the
twenty metrics separately by starters and relievers. Starters are given in black and
relievers in red1. We also provide the data from Figure 1 in Table 1.

There appear to be three clusters of metrics visible in the upper-left plot of
Figure 1. First, there are metrics demonstrating strong signal in a consistent manner,
with p̂1 near one and −Entropy near zero. These high signal metrics are indicated
by the dotted rectangle and are plotted in more detail in bottom panel of the figure.
We also see a continuum of metrics which have moderate signal, with −Entropy
less than -0.25 but p̂1 greater than 0.5. These are indicated by the dashed rectangle
and are plotted in more detail in the top right panel of the figure. Finally, we see
some isolated metrics with low signal (p̂1 < 0.5).

The metrics with highest signal are GB%, FB%, and K/9 for relievers and
FIP, HR/9, Pitches, ERA, and BB/9 for starters, and these findings have some sup-
port in the previous literature. K/9, BB/9, and HR/9 fit into the context of DIPS/FIP
paradigm of McCracken (2001)and Keri (2007). Our findings about GB% and FB%
are supported by Tippett (2003), who noted that certain pitchers tend to induce more
ground ball or fly ball outs than others. Our results are also relevant to previous
discussions (Treder, 2004) of bullpen specialization: ground ball specialists such
as Chad Qualls and lefty/sidearm strikeout specialists such as Mike Myers, Will
Ohman, and Chad Bradford are excellent examples of the importance of GB%,
FB%, and K/9 for relievers.

In contrast, K/BB and GB/FB stand out as particularly noisy measures. We
have observed that the ratios of two metrics will be quite noisy even when both the
numerator and denominator contain signal. Thus, K/9, BB/9, GB%, and FB% all
demonstrate moderate to high amounts of signal while their ratios do not. LD% is
another metric which shows little to no signal, a claim which has found both support
(Gassko, 2006) and criticism (Studeman, 2004).

Our model provides an interesting examination of the common ERA metric.
ERA has long been considered to be noisy and inferior to defense independent mea-
sures such as DIPS or FIPS (McCracken, 2001). Our model confirms the consensus
that FIP is a better measure, with a larger p̂1 and−Entropy than ERA. Our analysis
also suggests, however, that ERA does contain substantial signal, in most part due
to the large component of FIPS contained within ERA (Keri, 2007). Interestingly,
our results suggest that ERA dominates WHIP even though WHIP is often thought

1We fit our model to IFFB% but do not report our results for this metric since it does not fulfill the
normality assumption of our model. Thus, any conclusions about IFFB% are held very tentatively.

of as a superior measure.
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Figure 1: On the top left we plot p̂1 for each pitching metric versus −Entropy. On
the top right, we zoom in on the metrics indicated by the dashed rectangle in the
first plot. On the bottom, we zoom in on the high signal metrics indicated by the
dotted rectangle in the first plot. IFFB% is excluded as it does not fulfill the model
assumption of normality.
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Starters
Metric p̂1 -Entropy
FIP 0.965 -0.139
HR/9 0.952 -0.181
Pitches 0.948 -0.194
ERA 0.941 -0.216
BB/9 0.935 -0.219
HR/FB 0.896 -0.325
WHIP 0.892 -0.325
FB% 0.888 -0.307
RS 0.886 -0.345
K/9 0.877 -0.317
GB% 0.807 -0.419
BABIP 0.799 -0.480
RS/9 0.769 -0.524
AVG 0.745 -0.530
LOB% 0.719 -0.581
E-F 0.705 -0.597
LD% 0.516 -0.659
GB/FB 0.442 -0.521
K/BB 0.317 -0.494

Relievers
Metric p̂1 -Entropy
GB% 0.984 -0.069
FB% 0.982 -0.076
K/9 0.979 -0.090
RS/9 0.904 -0.297
BB/9 0.901 -0.301
RS 0.894 -0.323
ERA 0.867 -0.387
HR/9 0.865 -0.385
BABIP 0.843 -0.431
LOB% 0.794 -0.504
GB/FB 0.793 -0.433
LD% 0.739 -0.570
FIP 0.732 -0.551
HR/FB 0.694 -0.609
Pitches 0.662 -0.613
E-F 0.632 -0.655
AVG 0.627 -0.629
WHIP 0.613 -0.639
K/BB 0.041 -0.084

Table 1: Table of Metrics by Starter and Reliever: each table gives estimated p̂1 and
−Entropy and is sorted by the former. IFFB% is excluded as it does not fulfill the
model assumption of normality.

Another controversial pitching measure, batting average on balls in play, is
shown to have moderate signal by our analysis. BABIP has a reasonably large p̂1
for both starters and relievers, supporting the findings from Tippett (2003). How-
ever, BABIP does not have an impressive −Entropy, which leads some credence to
McCracken (2001).

We see substantial discrepancy between the high-signal metrics for relievers
versus starters. Part of this divergence is due to the different situations faced by each
type of pitcher. For example, it is important for starters to minimize the number
of pitches they throw in order to maximize the number of batters they face. So,
effective starters tend to favor pitching to contact, alleviating the risk of a walk. In
contrast, relievers do not have the same pitch count worries and have less concern
about the pitch count costs associated with walks. This allows them to place more
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Starter’s FIP
Player Mean (µ +αi)

Estimate SD
Best Five Players

Nolan Ryan 3.02 0.12
Pedro Martinez 3.03 0.14
J. R. Richard 3.06 0.18
Roger Clemens 3.13 0.10
Jon Matlack 3.16 0.18

Worst Five Players
Scott Elarton 5.28 0.24
Jamey Wright 5.02 0.20
Ricky Bones 5.01 0.23
Rob Bell 4.98 0.29
Ramon Ortiz 4.93 0.21

Population Mean µ̂ = 4.16

Starter’s ERA
Player Mean (µ +αi)

Estimate SD
Best Five Players

Jim Palmer 3.16 0.20
Pedro Martinez 3.17 0.19
Roger Clemens 3.22 0.15
Jose Rijo 3.25 0.24
Greg Maddux 3.27 0.14

Worst Five Players
Jamey Wright 4.88 0.26
Darren Oliver 4.80 0.26
LaTroy Hawkins 4.89 0.33
Eric Milton 4.76 0.23
Scott Elarton 4.86 0.29

Population Mean µ̂ = 4.11

Table 2: Best and Worst Five Players (by α̂i) for Starter’s FIP and ERA

focus on accruing the most effective outs, strikeouts. We discuss the distinction
between starting and relief pitching in more detail in Sections 3.2 and 3.3 below.

3.2 Examining Starters on High Signal Metrics

We focus our examination of individual players on the metrics FIP, ERA, HR/9, and
BB/9, which were found in Section 3.1 to be high signal for starting pitchers (we
omit discussion of Pitches because it is not particularly illuminating). In Table 2, we
present the best and worst five starters in terms of their estimated random effects
(α̂i) for the FIP metric. As discussed previously, FIP is considered the ”signal”
component from the more common measure ERA, so we also include the best and
worst starters for ERA and note there is overlap between the two on the best and
worst five.

Table 2 features several hall-of-fame caliber pitchers among the top five
pitchers in terms of FIP, as well as several great players with careers cut short by
injury (J. R. Richard and Jose Rijo). Scott Elarton is found to be the worst pitcher
(by a substantial margin) on this measure. However, we suspect that his FIP was
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Starter’s HR/9
Player Mean (µ +αi)

Estimate SD
Best Five Players

J. R. Richard 0.51 0.09
Bruce Berenyi 0.53 0.11
Steve Rogers 0.54 0.07
Tommy John 0.56 0.07
Nolan Ryan 0.56 0.05

Worst Five Players
Scott Elarton 1.53 0.11
Jose Lima 1.48 0.09
Eric Milton 1.43 0.08
Brian Anderson 1.39 0.09
Rick Helling 1.38 0.09

Population Mean µ̂ = 0.94

Starter’s BB/9
Player Mean (µ +αi)

Estimate SD
Best Five Players

Bob Tewksbury 1.52 0.20
Carlos Silva 1.63 0.26
Gary Nolan 1.67 0.35
Bret Saberhagen 1.70 0.17
Brad Radke 1.73 0.17

Worst Five Players
Kazuhisa Ishii 5.10 0.35
Bobby Witt 4.85 0.17
Jose DeJesus 4.84 0.38
Daniel Cabrera 4.78 0.27
Jason Bere 4.76 0.26

Population Mean µ̂ = 3.14

Table 3: Best and Worst Five Players (sorted by α̂i) for Starter’s HR/9 and BB/9.

inflated by the fact that he played in Mile High Stadium (pre-humidor) for three
seasons, a park known for harming a pitcher’s numbers.

In Table 3, we examine the best and worst starting pitchers in terms of the
HR/9 and BB/9 metrics. For both metrics, we see that there is a huge difference
between these pitchers and the league average, which implies a large τ2 parameter
in both cases. For the HR/9 measure, one contributing factor is ballpark: both
Scott Elarton and Eric Milton spent large parts of their career in home-run-friendly
ballparks. In fact, Milton has been a league average pitcher excluding his years
spent in Citizens Bank Park and the Great American Ballpark.

For the BB/9 measure, we see several pitchers among the best five that are
famous for their control. In the cases of Bob Tewksbury and Gary Nolan, their
ability to restrict walks allowed them to remain successful late into their careers. In
contrast, the worst five list is dominated by “power pitchers” such as Kazuhisa Ishii
and Daniel Cabrera who displayed impressive velocity in their careers but struggled
with control. Ishii, the worst pitcher, struck out nearly one batter per inning in his
first season, a very good K/9 for any pitcher. However, he walked 6.19 hitters
per nine innings that season, nearly twice the league average rate. The Dodgers
employed him another two seasons, but his control barely improved.
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Reliever’s GB%
Player Mean (µ +αi)

Estimate SD
Best Five Players

Cla Meredith 0.662 0.026
Bill Swift 0.634 0.026
Chad Bradford 0.629 0.020
Roger McDowell 0.625 0.014
Roy Corcoran 0.623 0.039

Worst Five Players
Troy Percival 0.287 0.016
Jeff Reardon 0.291 0.019
Gabe White 0.295 0.021
Al Reyes 0.301 0.023
Ugueth Urbina 0.308 0.017

Population Mean µ̂ = 0.449

Reliever’s FB%
Player Mean (µ +αi)

Estimate SD
Best Five Players

Troy Percival 0.544 0.016
Carlos Marmol 0.511 0.028
Al Reyes 0.499 0.023
Scott Proctor 0.497 0.026
Julio Mateo 0.496 0.022

Worst Five Players
Cla Meredith 0.178 0.026
Bill Swift 0.188 0.025
Roger McDowell 0.194 0.014
Derek Lowe 0.196 0.026
Chad Bradford 0.206 0.018

Population Mean µ̂ = 0.351

Table 4: Best and Worst Five Players (sorted by α̂i) for Reliever’s GB% and FB%
Compared to µ̂ .

3.3 Examining Relievers on High Signal Metrics

Unlike starters, relievers are typically employed in a more situationally dependent
manner. Rather than measurements of game-long performance (as for starters), the
high signal metrics for relievers more closely relate to individual at bats. Table 4
focuses on two of these high signal metrics: GB% and FB%.

We expect a negative correlation between GB% and FB%, which is not
surprising considering grounders and flys are both alternative outcomes for a ball in
play. This negative correlation is quite dramatic in Table 4, where several of the best
pitchers in terms of GB% correspond to the worst pitchers in terms of FB%. Cla
Meredith, Bill Swift, and Roger McDowell are routinely recognized as elite ground
ball pitchers, appearing with α̂i very positive for GB% and very negative for FB%.
We also see Chad Bradford, known for his quirky side arm delivery releasing the
ball inches from the ground, among the top ground-ball pitchers.

Table 5 shows the best and worst relief pitchers by the high signal metric
K/9. The worst pitchers on this measure are not particularly notable, but the best
five pitchers include several elite closers of the last few years. Eric Gagne has the
longest streak of converted saves (84), and Brad Lidge had a perfect 2008 season
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Reliever’s K/9
Player Mean (µ +αi)

Estimate SD
Best Five Players

Brad Lidge 12.01 0.46
Rob Dibble 11.89 0.48
Billy Wagner 11.57 0.35
Octavio Dotel 11.42 0.45
Eric Gagne 11.25 0.52

Worst Five Players
Dan Quisenberry 3.40 0.31
Mike Proly 3.54 0.49
Steve Comer 3.55 0.68
Jim Todd 3.56 0.48
Doug Sisk 3.56 0.44

Population Mean µ̂ = 6.45

Table 5: Best and Worst Five Players (sorted by α̂i) for Reliever’s K/9 Compared
to µ̂ .

(converting each of his 41 regular and 7 post season save opportunities). Although
our approach focuses on career performance rather than seasonal performance, our
results for strikeout rates are similar to those of Albert (2006).

3.4 Comparison to a Lasso-based Approach

The Lasso is a penalized least squares regression model which constrains some
parameter estimates to be zero (Tibshirani, 1996), and so it is commonly used for
variable selection. Thus, an alternative way to examine pitching metrics would be to
classify a particular metric as high signal if it had a large ”Lasso %”: the percentage
of players estimated to have non-zero means by the Lasso. This parameter is the
Lasso analogue of p̂1 from our model.

Figure 2 provides pairwise plots of Lasso % against p̂1 (left) and −Entropy
(right). Our model and the Lasso show general agreement in terms of both, though
there are three notable exceptions for p̂1: Starters’ GB/FB, Starters’ K/BB, and
Relievers’ K/BB. All three of these are ratio metrics, which are typically noisier
than their component numerator and denominator. Our methodology captures this
noisiness by estimating p̂1 near one-half and low −Entropy values whereas the
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Figure 2: Left: Plot of p̂1 (y-axis) against the percentage of players with non-zero
means selected by the Lasso. Right: Plot of−Entropy (y-axis) versus percentage of
players with non-zero means selected by the Lasso. IFFB% is excluded as it does
not fulfill the model assumption of normality.
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Lasso estimates an individual mean for about 80% of players for these three metrics.
For these three measures, we prefer the conservative approach of our model.

4 Discussion
We have developed a Bayesian random effects model which incorporates a point
mass mixture to distinguish players that are different from league average. We
argue that high signal metrics (i) have a large fraction of players which are different
from the league average and (ii) give high confidence about which players are not
league average. These criteria provide a framework for finding high signal metrics.
Our analysis considers starters and relievers separately, and we find a large disparity
in high signal metrics between these two types of pitchers.

Our model identifies FIP, HR/9, ERA, and BB/9 as the highest signal met-
rics for starters and GB%, FB%, and K/9 as the highest signal metrics for relievers.
Anecdotally, these measures are independent of team defense and thus support pre-
vious work (McCracken, 2001; Keri, 2007). BABIP, which has been a controversial
measure in past studies (McCracken, 2001; Tippett, 2003), is found to be middle of
the pack in terms of the amount of signal it contains. ERA is identified as a high
signal metric, though this is explained by the fact that FIP (an even higher signal
metric) is a significant component of ERA.

There are several directions for future work. We plan to fit our model to
other metrics that attempt to remove park, team, or league effects. Our approach
is also based on the assumption that true performance on each measure is constant
across a pitcher’s career. We plan to extend our model by building in non-constant
career trajectories or perhaps correlated error structures.

A Pitching Metrics
Our 20 pitching measures are enumerated in the table below. Several term refer-
enced in the table below are IBB (intentional walk), IP (innings pitched), H (hits),
HR (home run), AB (at-bats/batters faced), FB (fly balls), GB (ground balls), LD
(line drives), and BIP (balls in play). Note that for the batted ball measures (FB%,
LD%, GB%, IFFB%, GB/FB, HR/FB, RS/9, RS, and Pitches), there are only 19
seasons worth of data. The rest of the measures are based on 35 seasons (1974-
2008).
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Metric yi j Description
AVG batting average (H/AB)
BABIP batting average for balls in play (H/BIP)
FB% fly ball percentage (FB/BIP)
GB% ground ball percentage (GB/BIP)
LD% line drive percentage (LD/BIP)
IFFB% infield fly ball percentage (IFFB/FB)
K/9 strikeouts per 9 innings
BB/9 walks per 9 innings
HR/9 home runs per 9 innings
K/BB ratio of K to BB
GB/FB ratio of GB to FB
HR/FB ratio of HR to FB
LOB% one minus the ratio of runners scoring to all runners reaching base
ERA earned runs per 9 innings
FIP Fielding Indep. Pitching = (HR*13 + (BB + HBP - IBB)*3 - K*2) / IP
E-F ERA minus FIP
WHIP (BB + H)/IP
RS runs scored
RS/9 RS per 9 innings
Pitches pitches thrown per season

References
Albert, J. (2006): “Pitching statistics, talent and luck and the best strikeout seasons

of all-time,” Journal of Quantitative Analysis in Sports, 2, 2.

Bradbury, J. C. (2005): “Another look at dips,”
http://www.hardballtimes.com/main/article/another-look-at-dips1, May 24,
2005.

Caruth, M. (2007): “Groundballs and homerun rates,”
http://www.hardballtimes.com/main/article/groundballs-and-homerun-rates,
May 11, 2007.

Gassko, D. (2006): “The truth about the grounder,”
http://www.hardballtimes.com/main/printarticle/the-truth-about-the-grounder,
May 12, 2006.

Gassko, D. (2007): “Uncovering dips,” http://www.hardballtimes.com/main/article/uncovering-
dips, January 4, 2007.

Jaynes, E. T. (1957): “Information theory and statistical mechancics,” Physical
Review, 106, 620–630.

14

Journal of Quantitative Analysis in Sports, Vol. 6 [2010], Iss. 3, Art. 8

http://www.bepress.com/jqas/vol6/iss3/8
DOI: 10.2202/1559-0410.1237



Keri, J., ed. (2007): Baseball Between the Numbers: Why Everything You Know
about the Game Is Wrong, Basic Books.

McCracken, V. (2001): “Pitching and defense: How much control do hurlers
have?” http://www.baseballprospectus.com/article.php?articleid=878, January
23, 2001.

McShane, B. B., A. Braunstein, J. Piette, and S. T. Jensen (2009): “A Bayesian
variable selection approach to major league baseball hitting metrics,” Technical
report, arXiv:0911.4503.

Studeman, D. (2004): “Groundballs, flyballs, and lin drives,”
http://www.hardballtimes.com/main/article/groundballs-flyballs-and-line-
drives, May 9, 2004.

Studeman, D. (2006): “Inside der,” http://www.hardballtimes.com/main/article/inside-
der, January 26, 2006.

Tibshirani, R. (1996): “Regression shrinkage and selection via the lasso,” J. R.
Statist. Soc. B, 58, 267–288.

Tippett, T. (2003): “Can pitchers prevent hits on balls in play?”
http://www.diamond-mind.com/articles/ipavg2.htm, July 21, 2003.

Treder, S. (2004): “The closer and the damage done,”
http://www.hardballtimes.com/main/article/the-closer-and-the-damage-done,
August 17, 2004.

15

Piette et al.: A Point-Mass Mixture Random Effects Model for Pitching Metrics

Published by Berkeley Electronic Press, 2010


	Journal of Quantitative Analysis in Sports
	A Point-Mass Mixture Random Effects Model for Pitching Metrics
	A Point-Mass Mixture Random Effects Model for Pitching Metrics
	Abstract


